Wel-Come

Solar cell

presented by :Dr.Sharad Patil
 Dept of physics

What is a solar cell?

- A structure that converts solar energy directly to DC electric energy.
 - It supplies a voltage and a current to a resistive load (light, battery, motor).
- It is like a battery because it supplies DC power.
- It is different from a battery in the sense that the voltage supplied by the cell changes with changes in the resistance of the load.

Basic Physics of Solar Cells

- Silicon (Si) is from group 4 of the period table. When many Si atoms are in close proximity, the energy states form bands of forbidden energy states.
- One of these bands is called the band gap(Eg) and the absorption of light in Si is a strong function of Eg.

Basic Physics of Solar Cells

- Si is covalently bonded: It shares electrons.
 - When a Si atom is replaced with a group 3 (Al, B) it forms a positive particle called a hole that can move around the crystal through diffusion or drift (electric field).
 - When a Si atom is replaced with a group 5 (As, P) it forms an electron that can move around the crystal.
 - By selectively doping the Si Crystal when can change the resistivity and which type of carrier transfers charge (carries current). Because we can selectively dope a Si crystal it is called a semiconductor.

Photovoltaic effect

Definition:

The generation of voltage across the junction in a PN semiconductor due to the absorption of light radiation is called photovoltaic effect. The Devices based on this effect is called photovoltaic device.

Basics of solar cells

If two differently contaminated semiconductor layers are combined, then a so-called p-n-junction results on the boundary of the layers.

n-type semiconductor
p- type semiconductor

- By doping trivalent element, we get p-type semiconductor. (with excess amount of hole)
- By doping pentavalent element, we get n-type semiconductor (with excess amount of electron)

- Therefore, a vacant is created in the valence band and it is called hole.
- •Now, the electron in the conduction band and hole in valence band *combine together* and forms *electron-hole pairs*.

Comparison of Types of solar cell

Material	Efficiency (%)
Monocrystalline silicon	14-17
Polycrystalline silicon	13-15
Amorphous silicon	5-7

Solar Cell Efficiency

- AM1.5 Solar Intensity (Incident power density) 1000 W/m² or 100 mW/cm²
 - Losses
 - Photon Energy -47% of photons have eV<1.1, 30% goes to heat
 - Voltage factor ratio of energy given to energy required to produce electron 0.65
 - Recombination electron/holes that recombine 10%
 - Reflection reduced to 4%
 - Overall Efficiency $\eta_c = (0.47)(0.65)(.90)(.96)=.26$
 - 26% Maximum efficiency using current technologies

Uses of Solar Cells

- Renewable power
- Power for remote locations

Advantages of Solar Cells

- Consumes no fuel
- No pollution
- Wide power-handling capabilities
- High power-to-weight ratio

DISADVANTAGES

- The main disadvantage of solar cell is the initial cost. Most types of solar cell require large areas of land to achieve average efficiency.
- Air pollution and weather can also have a large effect on the efficiency of the cells.
- The silicon used is also very expensive and the solar cells can only ever generate electricity during the daytime.

Thank you...